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Abstract

Predictive maintenance is desired by industries that require
optimization of processes to prevent unnecessary costs in
maintenance. Monitoring sensors are widely applied, but the
lack of structured data and annotations can limit domain un-
derstanding when training intelligent algorithms for failure
prediction. This study focuses on a real-world oil and gas in-
dustry dataset, with multivariate time series data and manual
text annotations of maintenance periods. After iterative ex-
perimentation, the better approach utilizes the Random For-
est classifier, with eleven failures clustered through an un-
supervised brute-force technique, achieving 73% accuracy,
76% precision, and 70% recall. Tackling real-world predic-
tive maintenance through multiple approaches is the path to a
successful solution.

Motivation
Predictive Maintenance (PdM) consists of diagnosing fail-
ure signs within monitoring data, allowing for early detec-
tion and resolution of the issue. Previously there were two
common ways; in preventive maintenance (PvM), the main-
tenance is scheduled with a fixed period, while in reactive
maintenance (RM), the maintenance is done after the failure
happens. The optimal detection of PdM reduces the material,
and downtime costs, leading to process optimization (Pech,
Vrchota, and Bednář 2021). According to Deloitte insights
(Deloitte 2017), PdM allows an increase in equipment up-
time by up to 20%, a maintenance cost decrease of up to
10%, and to deploy industry resources more efficiently and
effectively.

Figure 1 describes an overall relation between costs and
the condition. The lines represent the full asset as one (e.g.,
the whole production Machine), while the dashes represent
a single component. In PvM, the maintenance cost is high,
while the repair cost is low. In contrast, in RM, the re-
pair cost is higher. PdM tries to balance both of these ap-
proaches. Maintenance can be related to sustainability, e.g.,
amount of devices, waste, energy spent, etc. When isolat-
ing, only the defective looks better to do RM (dashed lines):
less used components are used as much as possible. How-
ever, when analyzing the overall production, PvM has a bet-
ter energy use, while RM has a better use of the component
lifetime. PdM can find a balance between the advantages of
both strategies, e.g., savings in energy (PvM) and less waste
(RM).

Figure 1: Relation Between Cost and Asset condition

One of the main challenges of applying PdM in a real in-
dustry process is the lack of structured data and annotations,
which limits domain understanding.

Materials and Methods
This study follows a collaboration proposal from an undis-
closed oil and gas company. The main goal of the collabora-
tion is to recognize failure signs within a distillery asset and
provide valuable historical and real-time machine learning
for a future process dashboard.

Dataset
A real-world dataset of the oil industry is explored in this
study, including multivariate time series data of monitoring
sensors with hourly resolution, and manual annotations of
maintenance periods with daily resolution.

Regarding the annotations, three types of stops were iden-
tified: (i) scheduled, (ii) external, and (iii) failure. Sched-
uled maintenance does not indicate that the equipment needs
care; it is purely recurrent. However, such a type of main-
tenance should bring the equipment to an optimal working
state in most cases; therefore, it is not beneficial to failure
prediction directly. Nevertheless, they store an understand-
ing of the behaviors of a healthy device. Examples of exter-
nal faults are power or supply interruptions, which are not
helpful for predictive maintenance. Finally, twenty failures



were eligible for this research. The main criterion for the
selection of failures was healthy operation time prior.

Data Preprocessing
Preprocessing of the multivariate data starts with null value
interpolation. Based on domain experts’ annotations and in-
trinsic knowledge, it was determined that elected failures
should have at least ten-day of plain functioning before fail-
ure. After the Remaining Useful Life (RUL) computation,
i.e., the number of days until each failure, only twenty fail-
ures had the ten-day rule prior; those were incorporated in
this study. The binary label was defined with a five-day
threshold according to domain experts’ experiences. Ergo,
the data was labeled as follows:

• 1 for values of RUL lower than five days before failure.
• 0 for values of RUL larger than five days.

The threshold was set to half the window value to prevent
class imbalance and ease metric analysis. Data was normal-
ized through standard scaling fit to the train data.

Feature extraction with the Time Series Feature Extrac-
tion Library (TSFEL) (Barandas et al. 2020) added over 60
statistical, temporal, and spectral features from time series
data per window.

Experiments
After determining the twenty stops that made sense to this
study, the following experiments were carried out. First,
supervised learning with a tree-based algorithm - Ran-
dom Forests (RF) - and a recurrent neural network - Long
Short Term Memory (LSTM). Second, unsupervised learn-
ing based on text similarity over the annotated dataset, fol-
lowed by anomaly detection (isolation forest and local out-
lier factor algorithms) combined with TSFEL over the time
series. Finally, a brute force approach was used to determine
the most similar failures.

The asset’s RUL is framed as a classification problem and
estimated using Tree-Based and LSTM models. After initial
experimentation, suspicions arose about the existence of dif-
ferent failure types. A fact that led to this insight was the im-
proved performance when using a 50% train-test split com-
pared to 25%; see Table 1.

The clustering of different types of stops was studied
from different unsupervised perspectives. For instance, the
datasets’ unstructured annotations of failures led to a Natural
Language Processing (NLP) text similarity approach (Figure
3 at the Supplementary Materials). Furthermore, anomaly
detection algorithms, such as isolation forest and local out-
lier factors were employed to remove the less similar stops,
to make the large group more concise.

Finally, a random brute force approach resulted in a con-
cise group of 11 similar failures. Clustering based on brute
force was performed through the selection of stops that con-
tributed most to a better performance of the models after
hundreds of experiments with random datasets’ train/test
splits.

Due to project needs, a prototype of a web dashboard il-
lustrating the practical difference between reactive and pre-
dictive maintenance was developed. (Figure 2 at the Supple-
mentary Material).

Results
In Table 1, LSTM results show that the proportion chosen for
the test set influences model performance. For a usual 25%
test split, all metrics have lower values than for the 50% test
split. This may indicate an imbalanced set of failure types.
Regarding the RF results, metrics increased after performing
unsupervised failure clustering.

Test Size No. Failures Accuracy Precision Recall

LSTM 25 20 46 47 42
50 20 56 56 67

RF 25 20 59 60 61
25 11 73 76 70

Table 1: LSTM and Random Forest results, in percentages.
Reliance in train-test proportions in LSTM performance.
The positive impact of failure clustering in Random Forest
performance.

When compared to the LSTM, RF attained better results
since neural networks rely on large amounts of data to per-
form well in similar tasks. Therefore it is possible to con-
clude that the better approach utilizes the Random Forest
classifier, after brute-force clustering, with 73% accuracy,
76% precision, and 70% recall.

Conclusion
In this paper, the problem of predictive maintenance is
framed from diverse angles, including supervised, unsuper-
vised, and natural language processing. Failure clustering
methods allow for the acquisition of more robust labels for
further modeling and understanding of the processes. In a
perfect scenario, annotations and precise maintenance peri-
ods should be automated and standardized at the industry
level to ease the adoption of predictive maintenance algo-
rithms.

This study shows the feasibility of applying these ap-
proaches to many industries interested in acquiring the ben-
efits of predictive maintenance.
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Supplementary Material

Figure 2: Illustration of downtime difference in maintenance procedures. In reactive maintenance (above), maintenance only
occurs after critical failure, with increased downtime. In predictive maintenance (below), the AI alerts for early maintenance
scheduling, preventing critical failure and associated costs with additional repairs and downtime.

.

Figure 3: Text similarity results. NLP showed a clear similarity
between stops 12-17 and 10-14. Stops 2 and 19 showed high
individuality, corroborating the hypothesis that a small test set
could be biased.

Figure 4: This confusion matrix refers to the AI model pre-
sented in Figure 2. In this case, the results are optimistic (ac-
curacy: 91%, precision:100%, recall: 83%) because they refer
to the best fold in cross-validation; when all stops were used
in training except the one in the test.


